Potential of FlavocideTM as a new grain protectant to manage major resistant stored grain pests: an Australian case study

Dr Manoj Nayak

Leader, Postharvest Grain Protection Team

Department of Agriculture and Fisheries, Queensland, Australia

12th Conference of the IOBC-WPRS - Integrated Protection of Stored Products, Pisa, Italy 4th - 6th September 2019

Outline

- Background
- Australian grain industry at a glance
- Major stored product pests
- Current pest management strategies
- Brief overview FlavocideTM
- Research methodology
- Results
- Summary
- Future direction

Background

Bio-Gene Technology Ltd - funded Project (2016-2019)

"To develop Flavocide™ as a suitable grain protectant to manage resistant stored grain pests in Australia"

Research Team

- Department of Agriculture and Fisheries
 - Manoj Nayak, Greg Daglish, Rajeswaran Jagadeesan, Philip Burrill,
 Valerie Byrne, Hervoika Pavic
- Bio-Gene Technology Ltd
 - Peter May, James Wade

Australian grains industry at a glance...

- substantial contributor to Australian economy
- cereal grains, oilseeds and pulse crops \$18 billion
- 29% of farm production/ 30% value of farm export
- up to 80% of grain exported
- 'Nil tolerance' applicable for live insects

Major stored product pests

Lesser grain borer,
Rhyzopertha dominica (RD)

Rusty grain beetle

Cryptolestes ferrugineus (CF)

Rust-red flour beetle

Tribolium castaneum (TC)

Rice weevil,

Sitophilus oryzae (SO)

Sawtoothed grain beetle

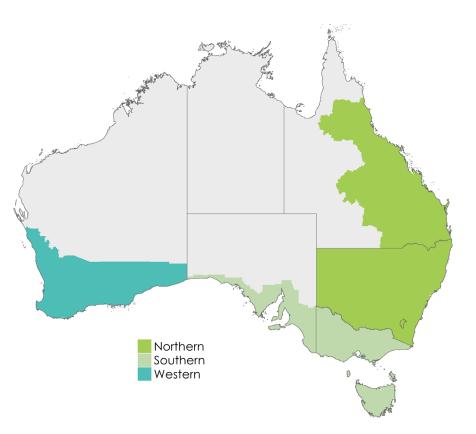
Oryzaephilus surinamensis (OS)

Current insect pest management

Chemical treatments

Disinfest - Fumigants (80%)

Protect - Protectants (20%)


Structural treatments (hygiene)

Non-chemical

Aeration cooling

Resistance management

Monitoring
New protocols
Developing alternative treatments

Grain protectants used

- Chlorpyrifos-methyl (resistance: RD, OS)
- Fenitrothion, Pirimiphos-methyl (resistance: RD)
- S-methoprene (resistance: RD, SO)
- Chlorpyrifos-methyl + S-methoprene (resistance: RD)
- Deltamethrin/PBO (resistance: SO)
- Spinosad (only controls RD)

Need for combination treatments to control range of resistant pests

Brief overview - FlavocideTM

β-triketones — class of biologically active natural plant compounds occurring in Myrtaceae (e.g. myrtles, eucalypts)

- Natural oil containing compound tasmanone
 - Bio-Gene trade name: Qcide™
- Synthesised nature-identical compound flavesone
 - Bio-Gene trade name: Flavocide™
- Insecticidal activity against a range of pest types
- Novel mode of insecticidal action
- Potential for control of resistant species

Research objectives

Objective 1

Establish a dose to control susceptible and resistant strains

- Range-finding bioassays against RD
- Test TC, CF, SO and OS at effective dose
- Criteria: adult mortality and progeny suppression

Objective 2

Determine potential partners for a combination treatment

- Chlorpyrifos-methyl
- Deltamethrin (K-Obiol Deltamethrin plus PBO)

Objective 3

Determine residual efficacy in wheat over time at effective dose

up to 9 months

Methodology – Laboratory experiments

Treatment

- Flavocide 500EW (500g/L flavesone in oil-in-water emulsion)
- Deltamethrin/PBO Combo (50g/L deltamethrin/ 400g/L PBO)
- Chlorpyrifos-methyl (500g/L chlorpyrifos-methyl)
- Dilutions made in distilled water

Grain

- Insect-free organic wheat (no treatment history)
- Moisture content after treatment 12%

Bioassay

- @ 10 mL per kilogram of wheat in glass jars
- 50 adults (1-3 wk) released (3 reps)
 - a susceptible strain used alongside a resistant strain
- Left in controlled environment room
 - 25°C and 55% r.h. (SO, OS)
 - 30°C and 55% r.h. (RD, TC, CF)

Resistant status of pest strains used

R. dominica

QRD1440 - resistant to OP protectants, pyrethroids

T. castaneum

QTC279 - resistant to malathion, bioresmethrin

C. ferrugineus

QCF73 – resistant to phosphine

O. surinamensis

QOS202 - resistant to fenitrothion, chlorpyrifos-methyl

S. oryzae

QSO393 – resistant to fenitrothion

Key criteria for success

Adult mortality

Adults exposed to treated and untreated (control) grain for 14 days

- grain sieved; mortality recorded
- live and dead insects removed
- grain returned to experimental jars
- left in controlled env. room for 6 weeks

Progeny suppression

F1 Adult progeny after 6 weeks

- progeny counted
- suppression determined by comparing progeny numbers in treated and untreated (control) grain

Range-finding: Flavocide vs. susceptible and resistant strains of *R. dominica*

Treatment	Strain	% Adult	% Progeny
(ppm)		mortality	suppression
25	Susceptible	100	100
	Resistant	30	30
50	Susceptible	100	100
	Resistant	95	100
60	Susceptible	100	100
	Resistant	100	100
75	Susceptible	100	100
	Resistant	100	100
100	Susceptible	100	100
	Resistant	100	100

- Pilot 25 ppm effective sus.
- 25 ppm not effective resist.
- 50 ppm complete suppr. of progeny, but adults survive
- 60 ppm achieves complete control of adults and progeny

Efficacy of two selected Flavocide doses against resistant strains of five key species

Species	Treatment (ppm)	% Adult mortality	% Progeny suppression	
R. dominica	25	57	89	
	60	100	100	
T. castaneum	25	0	17	
	60	0	36	
C. ferrugineus	25	3	77	
	60	62	100	
O. surinamensis	25	0.7	61	
	60	15	100	
S. oryzae	25	0.7	6	
	60	0.7	29	

- 25 and 60 ppm not effective vs TC, SO
- 25 and 60 ppm low efficacy vs adults - CF, OS
- 60 ppm complete suppr. of progeny – RD, CF, OS
- Not suitable as 'stand alone' treatment to control resistant strains of all pest species

Effect of Flavocide in combination with chlorpyrifos-methyl against resistant strains

Pest species	30 ppm Flavocide plus				60 ppm Flavocide plus			
(resistant strain)								
(10010101111)	5 ppm CM		10 ppm CM		5 ppm CM		10 ppm CM	
	Adults	F1	Adults	F1	Adults	F1	Adults	F1
R. dominica (QRD1440)	N	N	N	Y	Y	Y	Y 99.3	Υ
T. castaneum (QTC279)	Y 99.3	Y	Y	Y	Y	Y	Y	Υ
C. ferrugineus (QCF73)	Y	Y	Y	Y	Y	Y	Υ	Υ
O. surinamensis (QOS202)	N	N	N	N	N	Y 99.8	N	Υ
S. oryzae (QSO393)	Y	Y 99.9	Y	Y	Y	Y 99.9	Y	Y

Flavocide 60 ppm - highly effective vs. F1 in combination with Chlorpyrifos-methyl

Overview of results of combination of Flavocide & chlorpyrifos-methyl vs. resistant strains

- 30 ppm Flavo. + 5 ppm Chlor-methyl not effective RD, OS
- 30 ppm Flavo. + 10 ppm Chlor-methyl
 - not effective against OS
 - not effective against adults of RD
- 60 ppm Flavocide + 5 ppm/10ppm Chlorpyrifos-methyl
 - controls all spp. except adults of OS
- Flavocide at 60 ppm
 - highly effective as a combination with Chlorpyrifos-methyl

Effect of Flavocide in combination with deltamethrin (+PBO) against resistant strains

Pest species	30 ppm Flavocide plus				60 ppm Flavocide plus			
(resistant strain)	0.5 ppm K-Obiol		1.0 ppm K-Obiol		0.5 ppm K-Obiol		1.0 ppm K-Obiol	
	Adults	F1	Adults	F1	Adults	F1	Adults	F1
R. dominica (QRD1440)	N	N	N	Y	Y	Υ	Υ	Y
T. castaneum (QTC279)	N	N	N	N	N	N	N	N
C. ferrugineus (QCF73)	Y	Υ	Y	Y	Y	Υ	Y	Y
O. surinamensis (QOS202)	N	Y	N	Υ	Y	Y	Y	Y
S. oryzae (QSO393)	N	N	N	N	N	N	N	N

Flavocide 60 ppm highly effective vs. 3 spp in combination with deltamethrin (+PBO)

Overview of results of combination of Flavocide and deltamethrin (+PBO) vs. resistant strains

- 30 ppm Flavocide + 0.5 ppm deltamethrin (+PBO)
 - not effective against RD, TC and SO
 - only effective against CF and progeny of OS
- 30 ppm Flavocide + 1 ppm deltamethrin (+PBO)
 - not effective against TC and SO
 - only effective against CF and progeny of RD and OS
- 60 ppm Flavocide + 0.5 ppm/1ppm deltamethrin (+PBO)
 - not effective against TC and SO
- Flavocide at 60 ppm
 - highly effective (3 spp) as a combination with deltamethrin (+PBO)

Methodology – long-term residual studies

Treatment

- Flavocide 500EW (500g/L flavesone)
- dilutions made in distilled water 60, 90, 120 ppm
- applied @ 1litre/tonne (through nozzles in auger)

Grain

- freshly harvested insect-free untreated wheat
- treated grain put into 1 tonne bulk bags

Bioassay

- bulk bags of treated and control (water only) grain stored in shed
- samples taken and stored in laboratory for bioassays at 0, 1, 2, 3, 6, 9 and 12 mo
- · samples from shed taken at similar time intervals to the lab for bioassays

Residual efficacy (% mortality) against resistant R. dominica adults

Storage Period (months)	Location	60 ppm	90 ppm	120 ppm
0	Laboratory	99.3	100	100
	Field	99.3	100	100
1	Laboratory	90.0	99.3	99.3
	Field	87.9	99.3	100
2	Laboratory	49.3	87.3	99.3
	Field	64.0	93.9	99.3
3	Laboratory	17.3	59.3	96.7
	Field	25.3	71.8	93.3
6	Laboratory	6.0	19.3	78.0
	Field	4.0	49.3	82.7

- Laboratory data matched well with field data
- Efficacy against adults dropped significantly over time across all 3 doses

Residual efficacy (% suppression) against resistant R. dominica progeny

Storage Period (months	Location	60 ppm	90 ppm	120 ppm
0	Laboratory	100	100	100
	Field	100	100	100
1	Laboratory	100	100	100
	Field	100	100	100
2	Laboratory	99.8	100	100
	Field	99.3	100	100
3	Laboratory	99	99.5	100
	Field	99.2	100	100
6	Laboratory	96.3	99.5	100
	Field	96.7	100	100

- Laboratory data matched well with field data
- Complete progeny suppression achieved at all rates up to 3 months
- Complete progeny suppression achieved at rates of 90 and 120 ppm consistently up to 6 months

Summary

- Flavocide has great potential to manage resistant pests
- Flavocide alone may need doses higher than 60ppm for >6 months residual efficacy
- More effective against progeny suggesting sub-lethal effects on adult fecundity or on other life stages
- Potential for use in combination with other products to broaden scope of activity & improve efficacy

Future research...

- Extend the 'stand alone' residual study to 9 months
- Extend residual testing to other storage pest species
- Residual efficacy testing with combination treatments deltamethrin & chlorpyrifos-methyl
- Efficacy on other commodities barley, sorghum, maize, rice

The Research Team

Acknowledgements

- 12th IOBC-WPRS Organisers (Profs Pasquale, Barbara)
- BioGene Technology Ltd

Controlled Atmosphere and Fumigation Conference (CAF) - 2024 in Cairns?

GREAT BARRIER REEF ~ AUSTRALIA

Thank you

For more information, please email manoj.nayak@daf.qld.gov.au